Binômio de Newton
Introdução
Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
Se quisermos calcular (a + b)³, podemos escrever:
Se quisermos calcular (a + b)³, podemos escrever:
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Se quisermos calcular
, podemos adotar o mesmo procedimento:

(a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência
a partir da anterior, ou seja, de
.
Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal.


Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal.
Coeficientes Binomiais
Sendo n e p dois números naturais
, chamamos de coeficiente binomial de classe p, do número n, o número
, que indicamos por
(lê-se: n sobre p). Podemos escrever:



![]() |
O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu numerador e p, o denominador. Podemos escrever:
![]() |
É também imediato que, para qualquer n natural, temos:
![]() |
Exemplos:
![]() | ![]() |
De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binômio de Newton:
![]() |
Note que os expoentes de a vão diminuindo de unidade em unidade, variando de n até 0, e os expoentes de b vão aumentando de unidade em unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1 termos.
Fórmula do termo geral do binômio
Observando os termos do desenvolvimento de (a + b)n, notamos que cada um deles é da forma
.

- Quando p = 0 temos o 1º termo:
- Quando p = 1 temos o 2º termo:
- Quando p = 2 temos o 3º termo:
- Quando p = 3 temos o 4º termo:
- Quando p = 4 temos o 5º termo:
..............................................................................
Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por:
![]() |
Assim, podemos exemplificar:

Nenhum comentário:
Postar um comentário